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Properties of LAr 

All values are on the liquid-vapor saturation line and at E=500 V/cm unless otherwise indicated. 

Quantity Symbol Value Units Comments or [Ref] 
 
Atomic number Z 18   
Atomic weight A 39.948(1) g/mol  
Isotopic composition A=36, 38, 40 stable; 39, 42 t1/2>1y [1, 2,3] 
 
Thermodynamic properties 
Normal boiling point TNBP 87.303(2) K [4] 
Density NBP 1.396(1) g/ml [4] 
Vapor/liquid volume ratio V(g)/V(l) 241.7 none At TNBP  [5] 
Normal freezing point TFUS 83.8(3) K [4] 
Temperature at triple point TTRIPLE 83.8058 K ITS-90 def.  [4] 
Pressure at triple point PTRIPLE 0.68891(2) bar [4] 
Density at triple point TRIPLE 1.417 g/ cm3 [5] 
Temperature at critical point TC 150.687(15) K [4] 
Pressure at critical point PC 48.63(3) bar [4] 
Density at critical point C 0.5356(10) g/ cm3 [4] 
Heat of vaporization HVAP 161.14 kJ/kg [5] 
Heat capacity CP 1.117 kJ/kg/K [5] 
Thermal conductivity K 0.1256 W/m/K [5] 
Viscosity  270.7 Pa s [5] 
Speed of sound vS 838.3(1) m/s [5] 
 
Response to electromagnetic radiation 
Dielectric constant  1.505(3)  [6,7] 
Index of refraction n 1.38  At 128 nm [8,9,10] 
Rayleigh scattering length LR 95 cm At 128 nm [11,12,13] 
Absorption length LA >200 cm For >128 nm 
 
Response to ionizing radiation 
W-value for ionization WI 23.6(3) eV/pair mip [14, 15] 
W-value for scintillation WS 19.5(10) eV/photon mip [16] 
W-value for Cerenkov radiation WC 2700 eV/photon =1  [17] 
Fano factor F 0.107 none [18] 
Moliere radius RM 10.0 cm [19] 
Radiation length X0 14.0 cm [19] 
Nuclear interaction length I 85.7 cm [19] 
Critical energy EC 30.5 MeV [19] 
Minimum specific energy loss dEMIP/dx 2.12 MeV/cm [19] 
Scintillation emission peak SCINT 128(10) nm [20] 
Decay time SCINT 6(2), 1590(100) ns [21] 
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Charged particle transport properties 
Electron drift velocity vD(e-) 1.60(2) mm/s At TNBP  [22-25] 
… variation wrt temperature Log(vD)/T -1.9 %/K  
… variation wrt field Log(vD)/E +0.094 %/(V/cm)  
Electron saturation drift velocity vSAT(e-) 6.6 mm/s [39] 
Electron mobility at zero field 0 518(2) cm2/V s At TNBP 
Ion drift velocity vD(Ion) 8.0(4)x10-6 mm/s At TNBP  [26] 
… variation wrt temperature Log(vD)/T +3.5 %/K  
… variation wrt field Log(vD)/E +0.2 %/(V/cm)  
Electron transverse diffusion coef. DT(e-) 13(2) cm2/s [27,28,29] 
Electron longitudinal diffusion coef. DL(e-) 5(1) cm2/s [29,30] 
Electron diffusion at zero field D0 3.9 cm2/s At TNBP 
Ion diffusion coefficient D+ 3.2x10-3 cm2/s for TE 
Recombination constant R 0.66  For mip [31,32] 
Electron attachment rate constant kS 2.0x103 ppb-1 s-1 For O2 [33-37] 

 

 

Isotopic composition and radiological purity 

Isotope Relative Mass Abundance[3] Decay Mode[3] Half Life[3] Q-value (MeV)[3] 

36 35.967 546 28(27) 0.337(3) stable - - 

37 
 

nil EC,   35.04 d 0.8135(3) 

38 37.962 732 2(5) 0.063(1) stable - - 

39 
 

1.01(8) Bq/kg [1]  269 y 0.565(5) 

40 39.962 383 123(3) 99.600(3) stable - - 

41 
 

nil  109.34 m 2.4916(7) 

42 
 

6×10−5 Bq/kg [2]  32.9 y 0.599(40) 

 

Also 85Kr (, E =0.687 MeV, t1/2=10.756 y) is a common radioactive contaminant of LAr at the 

level of 0.1 to 0.3 Bq/kg 
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Thermodynamic Properties 

  

Enthalpy 

       Fit to enthalpy data from [5] 

Pade approximant:
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Phase Diagram [4] 
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Density [5] 
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Polynomial approximant:
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Vapor Pressure [5] 
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Dielectric constant [6, 7] 

 
Data are points from: 
[Circles] W. Don Carlos, et al., Experimental data on GEM LAC FCAL tube design, GEM TN-92-179 
(1992) (unpublished). 
 

[Triangles] R.L. Amey and R.H. Cole, Dielectric constants of liquefied noble gases and methane, J. 
Chem. Phys. 40 (1964) 146. 
 

[Gray line] The Handbook of Chemistry and Physics, 57th edition, CRC Press (1976).  Page E-55 gives 
the value of 1.538for the value of the dielectric constant at 82.15K, with a linear temperature slope 
of -0.34x10-4 K-1. 
 

[Gray square] K.D. Timmerhaus and T.M. Flynn, Cryogenic Process Engineering, Plenum Press NY 
(1989), p20 gives =1.52 at the normal boiling point. 

3

Clausius-Mossotti relation:

dielectric constant of the liquid
liquid density (see density section above)
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Index of refraction [8, 9, 10] 
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Rayleigh scattering attenuation length [11, 12, 13] 
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10 2 compressibility = 2.18 10  cm /dyne−×

 

If the difference in the attenuation lengths calculated for Rayleigh scattering (94 cm) and 
measured by Ishida (66±3)[12] can be attributed to atomic absorption in the measurement, 
then the partial attenuation length for atomic absorption in their experiment is ~ 2 m.  
Absorption by atomic Ar is very small at 128 nm; the nearest resonance transition is at 106.7 
nm.  The absorption length determined from the dispersion, for a reasonable line width, via 
the Kramers-Kroenig dispersion relation is >1000 m at 128 nm.  Absorption by impurities (O2, 
N2,  H2O and carbon compounds) is probably the dominant absorptive mechanism in LAr at 
128 nm.  The cross section for absorption by O2 at 128 nm is about 3x10-19 cm2 [40], which 
implies an attenuation length of 2.1 m for 800 ppb O2 in LAr.  The cross section for N2 is about 
1.2x10-18 cm2 [41] so an N2 concentration of 170 ppb contributes 2.1 m to the total absorption 
length.  H2O may be the dominant contributor: the cross section at 128 nm is 7.4x10-18 cm2 
[42] for an attenuation length of 2.1 m for 30 ppb.
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Electron drift velocity [22, 23, 24, 25] 

 

,

,

6(1 1( - 0))
Kalinin empirical function[22] fit to Icarus[24] and Aprile[25] data:
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Curves in the figure are this parameterization below 0.7 kV/cm, merging smoothly (continuous 
derivative) with Walkowiak [23] parameterization above 0.8 kV/cm. 
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Electron diffusion [27, 28, 29, 30]  

 

The data for transverse diffusion come from [27, 28].  The longitudinal diffusion is a single measurement 
from [29].  The transport theory calculation (solid lines) is from Atrazhev and Timoshkin [30], interpolated 
to the normal boiling point.  We plot the electron energy, , rather than the diffusion coefficient, D, 

because the electron energy is the quantity directly measured by experiment (for longitudinal diffusion at 
least) and is the quantity directly entering in the calculation of the RMS spatial spread of an ensemble of 
electrons: 

 ( )
( )

2 T L
T L

z
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∆
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with z the drift distance and E the field in volts per unit of drift distance.  The Einstein-Smoulchowski 

relation defines the diffusion constant in terms of the electron energy: 

 D µ ε= , 

so that the diffusion constant requires the additional knowledge of the electron mobility .  The dashed 

lines are the Atrazhev and Timoshkin theory scaled to the transverse data which give TRAN = 40 meV 

(DTRAN = 12.8 cm2/s) and LONG = 16.5 meV (DLONG = 5.3 cm2/s) at 500 V/cm. 
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  Ion Drift Velocity [26] 

 

Gee, et al. [26] provide measurements of the positive ion mobility in liquid argon from the normal 
boiling point up to the critical point, and demonstrates that the mobility is independent of electric field 
and that the product of mobility and liquid viscosity are constant (Stoke’s law): 
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The curve in the figure above is the liquid viscosity from [5] scaled to the lowest three data points of 
[26]. 
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Ions are in thermal equilibrium with the liquid, so the diffusion coefficient is  
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  Recombination [31, 32, 43] 

 

Solid lines are the recombination factor for charge (charge collected at finite field divided 
by charge collected at infinite field) [31, 32].  Dashed lines are the light recombination 
factor (light collected at field divided by light collected at zero field) [43].  The numbers 
labeling the curves are the specific energy loss (dE/dx) in units of mip. 
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Electron attachment [33, 34, 35, 36] 

 

The solid lines for O2, N2O, and SF6 are from Bakale, Sowada, and Schmidt [33]; the red 
points for O2 and all the points for CO2 are from Bettini (ICARUS) [34]; for  O2 the orange 
points are from Aprile, Giboni, and Rubbia [35] (at 500 V/cm) and from Adams, et al. [36] 
(for the points above 2kV/cm), and the magenta points are from Hofmann, et al. [37]; and 
the yellow point for H2O is from BooNE docDB 429-v1 and the dashed curve is the curve 

for N2O scaled to this point. The solid black line is a best fit, specified below, to the data 
for O2. 
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Breakdown Voltage [44, 45, 46] 

 

All of the curves in the figure are scaled from measurements made at and above room 
temperature.  This requires an extrapolation to reach the largest distances in the figure. 
The “Phelps” curve represents actual measurements up to 1 cm on this scale; the others 
are larger extrapolations.  The breakdown voltage is very sensitive to the presence of 
electronegative impurities at large distances, and to electrode preparation at small 
distances.  Electronegative impurities and dirty electrodes increase the breakdown voltage.  
Since the cleanliness of LAr is extremely good, it is advisable to assume that actual 
breakdown will occur below the lowest reported values in gas at higher temperatures. 
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